

Publication Date: 30.05.2025

Mehmet A. Begen¹

1. Western University, Ivey Business School, London, Canada; mbegen@ivey.ca; ORCID: 0000-0001-7573-0882 Correspondence: mbegen@ivey.ca

Last-Mile Logistics under E-commerce Growth: Efficiency and Emissions

Abstract

Background: E-commerce growth has intensified last-mile logistics, a stage often described as the final leg from a distribution hub to the customer and frequently cited as a disproportionate share of total delivery cost. This review evaluates operational strategies that improve efficiency while reducing emissions, framing the problem as a coupled cost–carbon optimization.

Methods: We synthesize work on last-mile delivery, consolidation, micro-fulfillment, electrification, and cargo-bike deployment, and propose a decision framework linking service promises to routing and fleet choices.

Results: Interventions that combine consolidation with low-emission modes can reduce emissions without sacrificing service, but they require urban infrastructure and governance of delivery windows and pickup options.

Conclusions: Sustainable last-mile performance is achieved through network design (where to stock), operational control (how to route), and demand shaping (how customers choose speed and delivery format).

Keywords: last-mile delivery; e-commerce logistics; route optimization; micro-fulfillment; electrification; cargo bikes; emissions

1. Introduction

In transportation and supply chain management, the last mile is the final segment that moves goods from a hub to the final destination. It is operationally challenging because deliveries are dispersed, routes are fragmented, and service expectations are high.

Two facts motivate research: last-mile activities can account for a large share of total logistics cost, and they can be emissions-intensive in dense urban areas. As e-commerce volumes rise, firms face a dual objective: protect service levels while bending the cost and carbon curves downward.

2. Materials and Methods

This review combines conceptual definitions of the last mile with evidence from practitioner and policy-oriented reports on emissions and operational levers. We focus on interventions that are scalable: consolidation strategies, pickup points, delivery windows, micro-fulfillment, routing optimization, and fleet decarbonization (electric vans and cargo bikes). We organize findings using a ‘cost–carbon frontier’ view: each intervention shifts the feasible set of outcomes, sometimes creating win–wins (lower cost and lower emissions) and sometimes forcing trade-offs.

3. Results

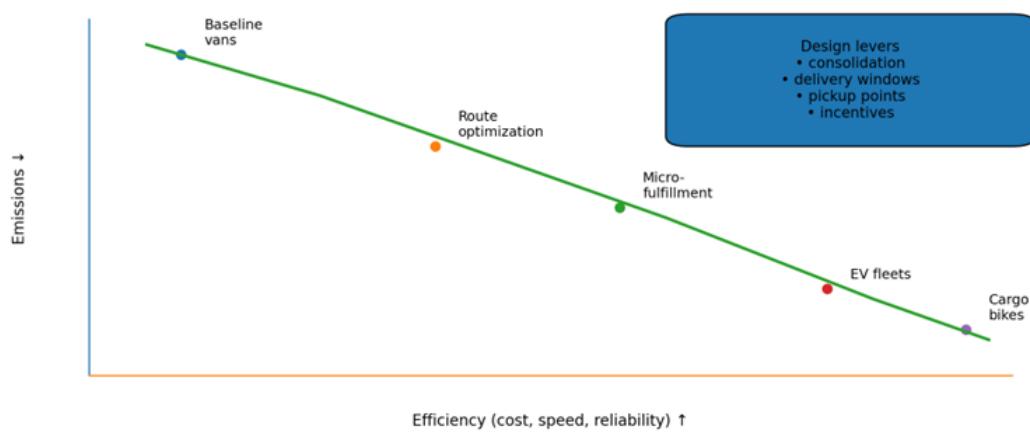
3.1. Efficiency levers. Route optimization, delivery density improvements, and micro-fulfillment can lower cost per drop and reduce failed deliveries. Consolidation through pickup points and scheduled delivery windows increases stop density and reduces vehicle-kilometers traveled.

3.2. Emissions levers. Electrification reduces tailpipe emissions, but it depends on charging infrastructure and electricity mix. Cargo bikes and e-bikes are particularly effective in dense areas where they avoid congestion and enable smaller, frequent rounds.

3.3. Integrated design. The strongest outcomes are achieved when network design (inventory positioning), operational control (routing and batching), and demand shaping (customer choice of speed and delivery format) are aligned.

4. Discussion

Last-mile sustainability is not only a technology problem. It is also a governance problem: service promises must be aligned with what is operationally and environmentally feasible. Ultra-fast delivery can increase trips and emissions unless countered by micro-fulfillment and consolidation.


Measurement should include emissions per parcel and per route, not only fleet-level totals. This supports fair comparisons between strategies and highlights the role of failed deliveries and returns.

5. Conclusions

Last-mile systems are best improved through coordinated interventions. Firms that invest only in fleet changes without redesigning routes and delivery formats may miss the largest efficiency gains.

Future research should quantify rebound effects (more orders due to faster delivery) and test policy levers such as curb access and urban consolidation centers.

Figures 1.

Figure 1. Efficiency–emissions frontier for last-mile interventions (conceptual).

Tables

Table 1. Last-mile interventions: expected operational and emissions effects.

Intervention	Mechanism	Efficiency effect	Emissions effect	Key constraint
Route optimization	Better sequencing and batching	Lower cost per stop	Lower VKT and emissions	Data quality; dynamic constraints
Micro-fulfillment	Closer inventory to demand	Faster delivery; fewer miles	Can reduce emissions	Real estate cost; inventory complexity
Pickup points	Consolidation of deliveries	Higher drop density	Lower emissions per parcel	Customer adoption; network coverage
Electric vans	Low-emission propulsion	Similar service capability	Lower tailpipe emissions	Charging and capex
Cargo e-bikes	Mode shift in dense cores	Faster in congestion	Very low emissions	Infrastructure; payload limits

Note: VKT = vehicle-kilometers traveled. Effects depend on city form, demand density, and service promises.

References

1. Accenture. (n.d.). *The sustainable last mile* (Point of View report). Accenture.
2. Allen, J., Browne, M., & Cherrett, T. (2012). Investigating relationships between road freight transport, facility location, logistics management and urban form. *Journal of Transport Geography*, 24, 45–57.
3. Anand, N., Quak, H., van Duin, R., & Tavasszy, L. (2012). City logistics modeling efforts: Trends and gaps—A review. *Procedia—Social and Behavioral Sciences*, 39, 101–115.
4. Begen, M. A., & Queyranne, M. (2011). Appointment scheduling with discrete random durations. *Mathematics of Operations Research*, 36(2), 240–257. doi:10.1287/moor.1110.0489
5. Buldeo Rai, H., Verlinde, S., Merckx, J., & Macharis, C. (2017). Crowd logistics: An opportunity for more sustainable urban freight transport? *European Transport Research Review*, 9(3), 39.

6. Cherrett, T., McLeod, F., Maynard, S., Hickford, A., & Allen, J. (2012). Understanding urban freight activity—Key issues for freight planning. *Journal of Transport Geography*, 24, 22–32.
7. Clean Mobility Collective & Stand.earth Research Group. (2022). *Revealing the secret emissions of e-commerce* (Last-mile emissions report). Stand.earth. Stand.earth
8. Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics systems. *Transportation Science*, 43(4), 432–454.
9. De Vos, J., & Witlox, F. (2016). Do people live in urban neighborhoods because they do not like to travel? Analyzing an alternative residential self-selection hypothesis. *Travel Behaviour and Society*, 4, 29–39.
10. Dell'Amico, M., Hadjidimitriou, N. S., Iori, M., & Novellani, S. (2021). The bike-sharing rebalancing problem: Mathematical formulations and benchmark instances. *Omega*, 101, 102266.
11. Gevaers, R., Van de Voorde, E., & Vanelslander, T. (2011). Characteristics and typology of last-mile logistics from an innovation perspective in an urban context. In C. Macharis & S. Melo (Eds.), *City distribution and urban freight transport* (Chapter 3). Edward Elgar Publishing. IDEAS/RePEc
12. Gencosman, B. C., & Begen, M. A. (2022). Exact optimization and decomposition approaches for shelf space allocation. *European Journal of Operational Research*, 299(2), 432–447. doi:10.1016/j.ejor.2021.08.047
13. Goodman, J., & Irwin, J. (2006). Special report: The promise of the “last mile.” *The McKinsey Quarterly*, 2, 1–8.
14. International Energy Agency. (2023). *Global EV outlook 2023* (Report). IEA.
15. International Transport Forum. (2021). *Zero-emission zones: Policy and implementation* (Report). OECD/ITF.
16. Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. *International Journal of Production Research*, 57(3), 829–846.
17. Kumar, I., & Chidambara. (2024). A systematic literature review and bibliometric analysis of last-mile e-commerce delivery in urban areas. *Transport Reviews*. doi:10.1080/21650020.2024.2357577 Taylor & Francis Online
18. Mangiaracina, R., Perego, A., Tumino, A., & others. (2019). Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. *International Journal of Physical Distribution & Logistics Management*, 49(9), 901–920. ScienceDirect
19. McKinnon, A. (2018). *Decarbonizing logistics: Distributing goods in a low carbon world*. Kogan Page.
20. Muñoz-Villamizar, A., Montoya-Torres, J. R., & Vega-Mejía, C. A. (2017). Non-collaborative vs. collaborative last-mile delivery: Comparative analysis. *International Journal of Logistics Research and Applications*, 20(3), 1–18.

21. Nocerino, R., Colorni, A., Lia, F., & Luè, A. (2016). E-commerce and urban logistics: Modern challenges and research directions. *Transportation Research Procedia*, 12, 299–310.
22. Patella, S. M., Scrucca, F., Asdrubali, F., & Carrese, S. (2023). Electrifying light commercial vehicles for last-mile deliveries: A life cycle assessment of zero-emission options. *Journal of Cleaner Production*, 401, 136793. ScienceDirect
23. RMI. (2024). *Decarbonizing last-mile delivery* (Report). Rocky Mountain Institute. RMI
24. Saveliev, A., & Karamshuk, D. (2021). Parcel lockers and pickup points: Effects on consolidation and last-mile efficiency. *Transportation Research Procedia*, 52, 310–317.
25. Schliwa, G., Armitage, R., Aziz, S., Evans, J., & Rhoades, J. (2015). Sustainable city logistics—Making cargo cycles viable for urban freight transport. *Research in Transportation Business & Management*, 15, 50–57.
26. Simoni, M. D., Bujanovic, P., Boyles, S. D., & Kutanoglu, E. (2020). Urban consolidation centers: A literature review and implications for freight. *Transportation Research Part A: Policy and Practice*, 132, 107–121.
27. Sustainable last mile delivery on e-commerce market in cities from the perspective of emissions and innovations. (2021). *Sustainable Cities and Society*, 74, 103220. ScienceDirect
28. World Economic Forum. (2024). *Transforming urban logistics: Sustainable and efficient last-mile delivery* (White paper). World Economic Forum. World Economic Forum Reports
29. Zacharias, C., Liu, N., & Begen, M. A. (2024). Dynamic interday and intraday scheduling. *Operations Research*, 72(1), 317–335. doi:10.1287/opre.2022.2342
30. Daci, E., & Rexhepi, B. R. (2024). The role of management in microfinance institutions in Kosovo: Case study Dukagjini region. *Quality – Access to Success*, 25(202). doi:10.47750/QAS/25.202.22 ORCID 0000-0003-0202-034X
31. Murtezaj, I. M., Rexhepi, B. R., Dauti, B., & Xhafa, H. (2024). Mitigating economic losses and prospects for the development of the energy sector in the Republic of Kosovo. *Economics of Development*, 23(3). doi:10.57111/econ/3.2024.82 ORCID 0000-0003-0202-034X
32. Murtezaj, I. M., Rexhepi, B. R., Xhaferi, B. S., Xhafa, H., & Xhaferi, S. (2024). The study and application of moral principles and values in the fields of accounting and auditing. *Pakistan Journal of Life and Social Sciences*, 22(2). doi:10.57239/PJLSS-2024-22.2.00286 ORCID 0000-0003-0202-034X
33. Rexhepi, B. R., Mustafa, L., Sadiku, M. K., Berisha, B. I., Ahmeti, S. U., & Rexhepi, O. R. (2024). The impact of the COVID-19 pandemic on the dynamics of development of construction companies and the primary housing market. *Architecture Image Studies*, 5(2). doi:10.48619/ais.v5i2.988 ORCID
34. Rexhepi, B. R., Rexhepi, F. G., Xhaferi, B., Xhaferi, S., & Berisha, B. I. (2024). Financial accounting management: A case of Ege Furniture in Kosovo. *Quality – Access to Success*, 25(200). doi:10.47750/QAS/25.200.09 ORCID0000-0003-0202-034X