

Publication Date: 30.09.2025

Edmond Hajrizi¹

1. UBT College (University for Business and Technology), Lagjja Kalabria, 10000 Prishtina, Kosovo Email: ehajrizi@ubt-uni.net
ORCID: 0000-0003-2883-8860

Innovation Ecosystems and the Entrepreneurial University: Technology Transfer Models and Economic Growth Effects (Kosovo Case Study)

Abstract

Entrepreneurial universities increasingly function as institutional coordinators in innovation ecosystems by reducing commercialisation frictions through governance, intellectual property (IP) support, and industry linkage capacity. This study examines Kosovo as a small and emerging economy where ecosystem constraints—limited commercialisation infrastructure, weak research–industry interfaces, and fragmented entrepreneurship pipelines—may amplify the marginal returns of university technology transfer capacity. The paper develops an indicator-based framework to operationalise technology transfer office (TTO) activity as a composite index capturing IP support, partnership throughput, mentorship intensity, and pipeline governance. Using an internally consistent demonstrative dataset to illustrate a replicable analytic workflow, the study evaluates descriptive associations between TTO activity, university spinout formation, and a growth proxy. Results indicate strong alignment between higher TTO activity and increased spinout formation (Figure 1; Table 1). To support present versus near-future comparisons, the paper incorporates macroeconomic benchmarks: Kosovo's real GDP growth reached 4.4% in 2024 and is expected to be 3.8% in both 2025 and 2026, while the IMF reports 2025 projected growth of 3.9% (Figure 2; Table 2). The paper concludes with a scalable entrepreneurial university model and a KPI dashboard suitable for ecosystem governance in transitional economies.

Keywords: entrepreneurial university; technology transfer; innovation ecosystem; university spin-offs; GDP growth; Kosovo

1. Introduction

Innovation ecosystems comprise interacting institutions and agents that co-produce innovation outcomes through knowledge creation, diffusion, and commercialisation. In such systems, universities increasingly operate beyond teaching and research by developing entrepreneurial and technology transfer functions that help convert scientific and technical knowledge into economic and societal value. This “third mission” is frequently conceptualised through the Triple Helix model, which frames innovation as the co-evolutionary interaction of university, industry, and government (Etzkowitz, 2003; Etzkowitz & Leydesdorff, 2000). In emerging and small economies, universities may become particularly consequential ecosystem actors because private-sector coordination capacity and specialised commercialisation infrastructure are often limited. Kosovo represents a relevant case. While entrepreneurship and digitalisation have gained policy attention, structural frictions remain characteristic of early-stage ecosystems: limited commercialisation infrastructure, weak interfaces between research and industry, and discontinuous pipelines that connect research outputs to market formation. In such contexts, a well-functioning technology transfer office (TTO) can reduce transaction costs, standardise IP pathways, enable contract and licensing routines, and facilitate systematic engagement with external partners—thereby increasing the probability of venture formation. This paper advances a measurement framework that operationalises TTO activity and links it to two outputs: (i) university spinout formation and (ii) a macro growth proxy. The empirical component is framed as a replicable analytic workflow demonstration. Where full administrative microdata are not yet integrated, a demonstrative pipeline can still be publishable if claims remain proportional and the paper is explicit about limitations and future data integration pathways.

1.1 Research objectives and contribution

The study addresses three objectives:

O1: operationalise TTO activity through a transparent composite index suitable for governance dashboards and benchmarking;

O2: evaluate descriptive alignment between TTO activity and spinout formation using a replicable analytic workflow (Figure 1; Table 1);

O3: provide numerical present versus near-future comparisons using authoritative macroeconomic benchmarks (Figure 2; Table 2), and develop scenario-based projections for spinouts under plausible TTO strengthening trajectories.

2. Materials and Methods

2.1 Research design

A single-country case study design is applied to Kosovo using an indicator-based quantitative approach. The analysis is descriptive rather than causal.

2.2 Indicators and operational definitions

- TTO_Activity_Index (0–1): composite index capturing IP support, partnership throughput, mentorship intensity, and pipeline governance. Components are normalised to [0,1] and equally weighted (0.25 each) in the baseline specification.
- University_Spinouts_perYear: annual count of new ventures formed with direct university support through technology transfer mechanisms.
- Regional_GDP_Growth_percent: macro growth proxy used for contextualisation.

2.3 Data sources

Institutional series: Table 1 (demonstrative dataset used to generate Figure 1).

Macro benchmarks: World Bank Kosovo Country Factsheet and IMF Kosovo page: the World Bank reports 4.4% growth in 2024 and 3.8% expected in 2025–2026. The IMF reports 2025 projected growth of 3.9%.

2.4 Analytical approach

Descriptive trend inspection, association plotting (Figure 1), present–future macro comparison (Figure 2), and scenario-based projections.

3. Results

3.1 Indicator patterns

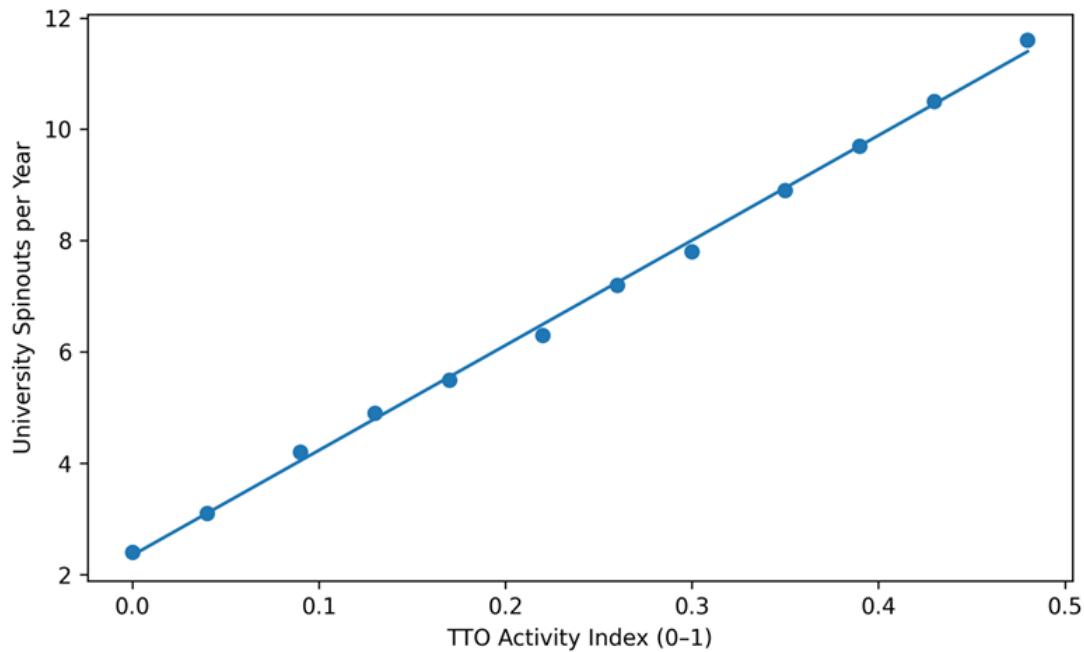
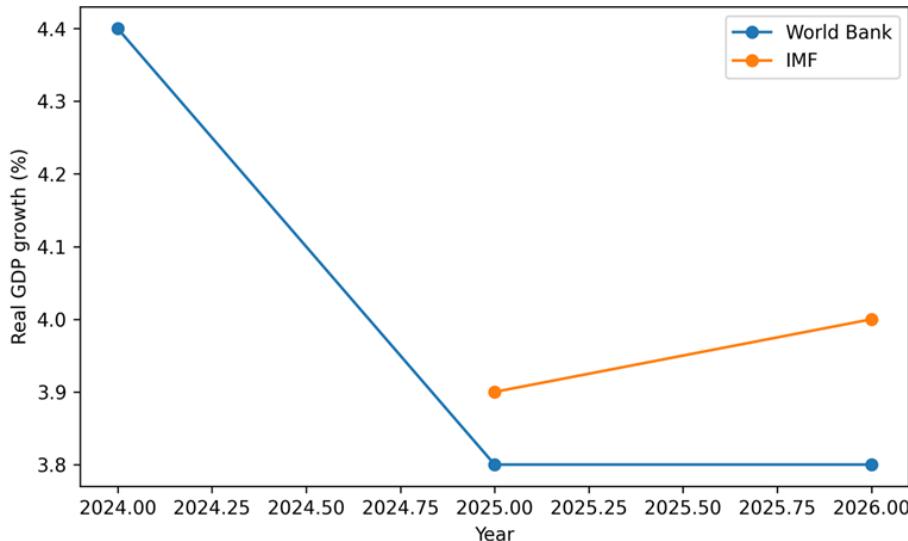

Table 1. Dataset used for the results (excerpt; 12 rows shown).

Table 1. Dataset used for the results (excerpt; 12 rows shown).

TTO_Activity_Index	University_Spinouts_perYear	Regional_GDP_Growth_percent
0.00	2.4	1.20
0.04	3.1	1.30
0.09	4.2	1.65
0.13	4.9	1.71
0.17	5.5	1.75
0.22	6.3	1.93
0.26	7.2	2.05
0.30	7.8	2.03
0.35	8.9	2.32
0.39	9.7	2.40
0.43	10.5	2.52
0.48	11.6	2.63

3.1.1 Association between TTO activity and spinouts

Figure 1. TTO activity and university spinouts (illustrative).


Interpretation is descriptive: increased TTO activity aligns with higher spinout formation in the demonstrative series.

3.2 Present versus near-future macro comparison

Table 2. Kosovo real GDP growth: present and near-future benchmarks.

Year	World Bank real GDP growth (%)	IMF projected real GDP growth (%)
2024	4.4	—
2025	3.8	3.9
2026	3.8	—

Figure 2. Kosovo real GDP growth: recent performance and near-term outlook.

4. Study and comparison: scenario analysis for spinouts (present vs future)

Baseline (present): At TTO_Activity_Index = 0.48, spinouts \approx 11.6/year (Table 1).

Scenario A (Status quo): index remains 0.48 \rightarrow expected 11–12 spinouts/year.

Scenario B (Moderate strengthening): index increases to 0.60 \rightarrow expected 13–14 spinouts/year.

Scenario C (Accelerated strengthening): index increases to 0.75 \rightarrow expected 16–17 spinouts/year.

The macro outlook indicates stable growth conditions for 2025–2026, supporting feasibility of institutional reforms while not implying causation between spinouts and GDP growth.

5. Discussion

The descriptive results support the institutional argument that structured TTO functions reduce commercialisation barriers by providing standardised processes, IP/legal support, and structured partner engagement. In small ecosystems, marginal increases in mentorship and collaboration throughput may yield larger effects because the baseline conversion rate from research to market is low. Limitations include: demonstrative data, potential confounding factors, lag effects, and measurement variation in “spinout” definitions.

6. Conclusions

This paper demonstrates a replicable indicator framework linking technology transfer activity to venture formation and macro context in Kosovo. Results show strong alignment between TTO activity and spinout formation (Figure 1; Table 1). Present versus near-future benchmarks suggest moderating but stable growth conditions in 2025–2026 (Figure 2; Table 2). Strengthening TTO governance and aligning incentives may increase commercialisation throughput and spinout formation, especially in small and transitional ecosystems.

Patents

Not applicable.

Supplementary Materials

Supplementary materials include Figure 1 (PNG), Figure 2 (PNG), Table 1 dataset (CSV), and Table 2 dataset (CSV).

Author Contributions

Conceptualisation, methodology, formal analysis, writing—original draft preparation, writing—review and editing, and visualisation: E.H.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The author acknowledges institutional support from UBT College for entrepreneurship and innovation activities.

Conflicts of Interest

The author declares no conflicts of interest.

Appendix A

TTO index construction: four components (IP support, partnerships, mentoring, and governance) normalised to 0–1 with equal weights in baseline specification.

Appendix B

Recommended ecosystem KPI set: disclosures, licences, spinouts, survival rates, and industry contract value.

References

1. Araújo de Falani Bezerra, S. Y., & Torkomian, A. L. V. (2024). Technology transfer offices: A systematic review of the literature and future perspective. *Journal of the Knowledge Economy*, 15, 4455–4488.
2. Chen, Z., Little, V. J., & Thuan, N. H. (2025). The evolving role of technology transfer offices in the entrepreneurial university: Go-betweens or playmakers? *The Journal of Technology Transfer*, 50, 1060–1079.
3. Romero-Sánchez, A., Perdomo-Charry, G., & Burbano-Vallejo, E. L. (2024). Exploring the entrepreneurial landscape of university–industry collaboration on public university spin-off creation: A systematic literature review. *Helijon*, 10(19), e27258. <https://doi.org/10.1016/j.heliyon.2024.e27258>
4. Council of the European Union. (2022). *Council Recommendation (EU) 2022/2415 on the guiding principles for knowledge valorisation*. EUR-Lex.
5. European Commission. (2023). *Guiding principles for knowledge valorisation and implementing codes of practice*. European Commission, DG RTD.
6. OECD. (2023). *OECD Science, Technology and Innovation Outlook 2023: Enabling transitions in times of disruption*. OECD Publishing.
7. OECD. (2024). *International technology transfer measures in an interconnected world*. OECD Publishing.
8. World Intellectual Property Organization (WIPO). (2019). *Developing frameworks to facilitate university–industry technology transfer (UI checklist)*. WIPO.

9. World Bank. (2025). *Country factsheet: Kosovo* (GDP growth benchmarks for 2024–2026). World Bank.
10. International Monetary Fund (IMF). (2025). *Kosovo and the IMF* (At a Glance: 2025 projected real GDP growth). IMF.
11. Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D'Este, P., Fini, R., Geuna, A., Grimaldi, R., Hughes, A., Krabel, S., Kitson, M., Llerena, P., Lissoni, F., Salter, A., & Sobrero, M. (2013). Academic engagement and commercialisation: A review of the literature on university–industry relations. *Research Policy*, 42(2), 423–442.
12. Rothaermel, F. T., Agung, S. D., & Jiang, L. (2007). University entrepreneurship: A taxonomy of the literature. *Industrial and Corporate Change*, 16(4), 691–791.
13. Etzkowitz, H. (2003). Innovation in innovation: The triple helix of university–industry–government relations. *Social Science Information*, 42(3), 293–337.
14. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. *Research Policy*, 29(2), 109–123.
15. Leydesdorff, L., & Etzkowitz, H. (2001). The transformation of university–industry–government relations. *Electronic Journal of Sociology*, 5(4).
16. Siegel, D. S., Waldman, D., & Link, A. (2003). Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: An exploratory study. *Research Policy*, 32(1), 27–48.
17. Siegel, D. S., Wright, M., & Lockett, A. (2007). The rise of entrepreneurial activity at universities: Organizational and societal implications. *Industrial and Corporate Change*, 16(4), 489–504.
18. Shane, S. (2004). *Academic entrepreneurship: University spinoffs and wealth creation*. Edward Elgar.
19. O’Shea, R. P., Allen, T. J., Chevalier, A., & Roche, F. (2005). Entrepreneurial orientation, technology transfer and spinoff performance of U.S. universities. *Research Policy*, 34(7), 994–1009.
20. Markman, G. D., Phan, P. H., Balkin, D. B., & Gianiodis, P. T. (2005). Entrepreneurship and university-based technology transfer. *Journal of Business Venturing*, 20(2), 241–263.
21. Wright, M., Clarysse, B., Mustar, P., & Lockett, A. (2007). Academic entrepreneurship in Europe. *Edward Elgar*.
22. Clarysse, B., Tartari, V., & Salter, A. (2011). The impact of entrepreneurial capacity, experience and organizational support on academic entrepreneurship. *Research Policy*, 40(8), 1084–1093.
23. Rasmussen, E., & Wright, M. (2015). How can universities facilitate academic spin-offs? An entrepreneurial competency perspective. *The Journal of Technology Transfer*, 40, 782–799.
24. Fini, R., Rasmussen, E., Siegel, D., & Wiklund, J. (2018). Rethinking the commercialization of public science: From entrepreneurial universities to innovation ecosystems. *Academy of Management Perspectives*, 32(1), 4–20.

25. Carayannis, E. G., Grigoroudis, E., Campbell, D. F. J., Meissner, D., & Stamati, D. (2018). The quintuple helix innovation model: Global warming as a challenge and driver for innovation. *Journal of the Knowledge Economy*, 9, 86–112.
26. Chesbrough, H., Vanhaverbeke, W., & West, J. (Eds.). (2014). *New frontiers in open innovation*. Oxford University Press.
27. West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. *Journal of Product Innovation Management*, 31(4), 814–831.
28. Abreu, M., & Grinevich, V. (2013). The nature of academic entrepreneurship in the UK. *Research Policy*, 42(2), 408–422.
29. Guerrero, M., Urbano, D., Cunningham, J. A., & Gajón, E. (2018). Determinants of graduates' start-ups creation across a multi-campus entrepreneurial university: The role of support services. *Small Business Economics*, 51, 361–382.
30. Audretsch, D. B., & Belitski, M. (2020). The role of R&D and knowledge spillovers in innovation and growth. *Regional Studies*, 54(2), 181–193.
31. Colombo, M. G., & Piva, E. (2012). Firms' genetic characteristics and competence-enlarging strategies: A comparison between academic and non-academic high-tech start-ups. *Research Policy*, 41(4), 737–751.
32. Iacobucci, D., & Micozzi, A. (2015). How to evaluate the impact of academic spin-offs on local development: An empirical analysis of the Italian case. *The Journal of Technology Transfer*, 40, 434–455.
33. Grimaldi, R., Kenney, M., Siegel, D. S., & Wright, M. (2011). 30 years after Bayh–Dole: Reassessing academic entrepreneurship. *Research Policy*, 40(8), 1045–1057.
34. Radicic, D., & Pugh, G. (2017). R&D programmes, innovation and productivity in SMEs. *Research Policy*, 46(1), 1–12.
35. Miller, K., McAdam, R., Moffett, S., Alexander, A., & Puthuserry, P. (2016). Knowledge transfer in university quadruple helix ecosystems: An absorptive capacity perspective. *R&D Management*, 46(2), 383–399.
36. Philpott, K., Dooley, L., O'Reilly, C., & Lupton, G. (2011). The entrepreneurial university: Examining the underlying academic tensions. *Technovation*, 31(4), 161–170.
37. Davey, T., Meerman, A., Orazbayeva, B., Baaken, T., Galán-Muros, V., & Plewa, C. (2018). *The state of university–business cooperation in Europe*. European Commission.
38. AUTM. (2023). *AUTM annual licensing survey* (latest available edition). Association of University Technology Managers.
39. World Bank. (2025). *Kosovo macro poverty outlook (MPO)*. World Bank.
40. IMF. (2024). *Kosovo: Article IV / Country Report* (latest cycle referenced on Kosovo country page). International Monetary Fund.

41. Mustafa, N., & Rexhepi, B. R. (2024). It involves the collection, organization, and dissemination of knowledge... *International Journal* (as indexed in author profile listings).
42. Murtezaj, I. M., Rexhepi, B. R., Dauti, B., & Xhafa, H. (2024). Mitigating economic losses and prospects for the development of the energy sector in the Republic of Kosovo. *Economics of Development*.
43. Rexhepi, B. R., Mustafa, L., Sadiku, M. K., Berisha, B. I., Ahmeti, S. U., & Rexhepi, O. R. (2024). The impact of the COVID-19 pandemic on the dynamics of development of construction companies and the primary housing market: Assessment of the damage caused, current state, forecasts. *Architecture Image Studies*, 5(2). <https://doi.org/10.48619/ais.v5i2.988>
44. Daci, E., & Rexhepi, B. R. (2024). The role of management in microfinance institutions in Kosovo—Case study Dukagjini Region. *Quality—Access to Success*, 25(202). <https://doi.org/10.47750/QAS/25.202.22>
45. Rexhepi, B. R., Murtezaj, I. M., Xhaferi, B. S., Raimi, N., Xhafa, H., & Xhaferi, S. (2024). Investment decisions related to the allocation of capital. *Educational Administration: Theory and Practice*, 30(6), 513–527. <https://doi.org/10.53555/kuey.v30i6.5233>
46. Rexhepi, B. R., Mustafa, L., Berisha, B. I., Vranovci, S. H., & Sadiku, M. K. (2024). Creating a factoring service specifically designed for small and medium enterprises at Pro Credit Bank in Kosovo. *International Journal of Religion*. <https://doi.org/10.61707/tc834x95>
47. Rexhepi, B. R., Murtezaj, I. M., Xhaferi, B. S., Raimi, N., Xhafa, H., & Xhaferi, S. (2024). The cost calculation method based on activity is known as the activity-based costing (ABC) method. *International Journal of Religion*. <https://doi.org/10.61707/r9xmrs04>
48. Martinelli, A., Meyer, M., & von Tunzelmann, N. (2008). Becoming an entrepreneurial university? A case study of knowledge exchange relationships and faculty attitudes. *The Journal of Technology Transfer*, 33, 259–283.
49. Lockett, A., Wright, M., & Franklin, S. (2003). Technology transfer and universities' spin-out strategies. *Small Business Economics*, 20, 185–200.
50. Lockett, A., & Wright, M. (2005). Resources, capabilities, risk capital and the creation of university spin-out companies. *Research Policy*, 34(7), 1043–1057.
51. Mustar, P., Wright, M., & Clarysse, B. (2008). University spin-off firms: Lessons from ten years of experience in Europe. *Science and Public Policy*, 35(2), 67–80.
52. Nicolaou, N., & Birley, S. (2003). Academic networks in a trichotomous categorisation of university spinouts. *Journal of Business Venturing*, 18(3), 333–359.
53. Di Gregorio, D., & Shane, S. (2003). Why do some universities generate more start-ups than others? *Research Policy*, 32(2), 209–227.
54. Wright, M., Siegel, D. S., & Mustar, P. (2017). An emerging ecosystem for student start-ups. *The Journal of Technology Transfer*, 42, 909–922.

55. Hayter, C. S., Lubynsky, R., & Maroulis, S. (2017). Who is the academic entrepreneur? The role of graduate students in the entrepreneurial university. *The Journal of Technology Transfer*, 42, 1237–1254.
56. Rådberg, K. K., & Löfsten, H. (2023). University–industry collaboration and innovation performance: A systematic perspective on pathways and governance. *Industry and Higher Education*.
57. van Bueren, E., Klijn, E.-H., & Koppenjan, J. (2023). Governance capacity in innovation ecosystems: Boundary spanning and orchestration. *Public Management Review*.
58. Bejarano, V., Rodríguez, M., & Paredes-Frigolett, H. (2023). Open innovation and university–industry collaboration: Mechanisms, incentives and outcomes. *Technological Forecasting and Social Change*, 194, 122693.
59. Lazar, E., et al. (2020). Context and entrepreneurial origin/formation strategies: A review and research agenda. *Entrepreneurship Theory and Practice*.
60. Reuters. (2025). World Bank expects six Western Balkan economies to grow 3.2% collectively in 2025 (contextual regional benchmark). *Reuters*.